

Opacity measurements at Z

Opacity Workshop Los Alamos National Laboratory

May 5, 2005

without Fe

with Fe + Mg

J. E. Bailey (jebaile@sandia.gov)

Many people contribute to this work

G.A. Rochau, R.B. Campbell, G.A. Chandler, J. McKenney, and T.A. Mehlhorn

{Sandia National Laboratories, Albuquerque, New Mexico}

J.J. MacFarlane, P. Wang, I.E. Golovkin D. Haynes {Prism Computational Sciences, Madison, Wisconsin}

R.C. Mancini {University of Nevada, Reno, Nevada}

M. Bump, O. Garcia, J.M. Lucas, T.C. Moore {K-Tech Corp., Albuquerque, New Mexico}

Z opacity experiments strengthen existing database and extend measurements beyond T ~ 150 eV

Laboratory opacity measurements at stellar interior conditions are not presently available

Mid-Z and high-Z opacities are important for many HEDP physics problems

- ICF ablators, e.g., Cu-doped Be or Ge-doped CH at Te up to 300 eV
- Z-pinch radiation, e.g., tungsten at Te > 100 eV
- Published laboratory opacity measurements at T > 70 eV are unavailable (non-existant?)

Mid-Z elements pose a challenge for opacity calculations

- Charge state distribution (spectroscopic accuracy)
- What transitions must be included?
- What approximations for configuration and transition grouping?
- What line broadening?

Anatomy of an opacity experiment

Comparison of unattenuated and attenuated spectra determines transmission $T = exp - \{\mu \rho x\}$

- Sample spatial uniformity (thin, large lateral size, thick tamper)
- Minimal temporal variations during probe time (backlight short compared to heating x-ray variation)
- Steady state (long duration heating x-rays)
- Temperature and density measurements (large wavelength range to enable simultaneous low Z and high Z measurements)

Characteristics of Z x-ray source can promote quality measurements

Possible experiment flaws can be evaluated from the scaling of transmission with sample thickness

Potential experiment problems:

- Sample may not be cartoon-like (pinholes, columnar structure)
- Sample composition or areal density may not match specifications (oxidation, contamination)
- Sample self emission may alter apparent transmission
- Conversion of film density to film exposure may be inaccurate
- Background subtraction incorrect
- Crystal defects may introduce artificial spectral features or mask actual features
- Lines may saturate

All of these problems cause transmission to deviate from expected scaling with thickness : $T_1 = T_2^{(x1/x2)}$

Opacity experiments can exploit the intense radiation provided by the Z accelerator

We have used two different opacity experiment configurations at Z

Each opacity experiment configuration offers advantages and disadvantages

Side-on:

- Multiple large samples exposed in a single experiment
- Many opportunities for ride alongs
- Temperature limited to ~ 50 eV or less

End-on:

- Single sample exposed in each experiment
- Relatively rare opportunities for ride alongs
- Temperatures above ~ 150 eV can be reached

Other configurations are feasible, but not yet demonstrated on Z

- External hohlraum (Springer et al., JQSRT 58, 927 (1997))
- Interior of dynamic hohlraum (Bailey et al, 2005)

Dynamic hohlraum radiation source is created by accelerating a tungsten plasma onto a low Z foam

The radiation source heats and backlights the sample

Opacity measurements were strongly suggested by Ti symmetry foil absorption spectra

This demonstrates:

- Foils reach interesting conditions
- Self backlight source is very bright

Ti absorption spectra are a rich opportunity for atomic physics, despite lack of optimization

Improvements:

- Mixtures to obtain T, r diagnosis
- Reduced thickness to improve uniformity
- Better crystal quality

L-shell Fe absorption features have been successfully recorded

One pair of Z experiments determines the Fe + Mg transmission

The sample conditions are diagnosed from Mg absorption spectra

Experiments with and without Fe enable determination of the Fe transmission

- The difference between z1363 &z1364 is the Fe+Mg transmission
- Assuming shot to shot reproducibility

The shot to shot reproducibility is good, if conditions are carefully controlled

- Both experiments used 10 μm CH | 0.3 μm Mg + 0.4 μm Fe | 10 μm CH sample
- No scaling was applied for this comparison
- Reproducibility is approximately 10% or better over this wavelength range

The dynamic hohlarum backlighter measures transmission over a very broad λ

Transmission for two Fe thicknesses under similar T_e and n_e conditions has been measured

The transmission data scales with the thickness approximately as expected

- •Significant portions of the spectrum scales with { T } ×, with x=thickness
- •This supports method robustness correct areal density, negligible self emission, correct film response, correct background subtraction
- •Residual differences due to line saturation, possibly different Te, ne

The Fe L-shell spectrum exhibits a wealth of line absorption features

Reproducing these features is a difficult test for any opacity model

PRISMSPECT calculations exhibit respectable agreement with Fe transmission

- The main features are well reproduced
- The calculated transmission has "windows" between the lines

The data enables tests of the calculated charge state distribution

Side-on opacity experiments use samples placed ~ 5 cm from the pinch

The ability to measure complex opacities is being developed using open M-shell bromine.

Goal for ride-alongs:

Use FREE radiation to measure opacities at

~ 20-70 eV and ~10⁻³ - 10⁻² g/cc

Basic idea:

Pinch both heats and backlights sample

Na = thermometer; Br = test element

Develop method, then many elements can be measured

The drive temperature changes only by a modest amount over the z-pinch backlighter duration

time-integrated spectrum ~ peak power time-resolved spectrum

time-integrated spectrometers have superior range and resolution

The temperature and density are diagnosed with roughly ± 10% and ± 30% uncertainties, respectively

- •SCO calculations by P. Arnault, T. Blenski, and G. Dejonghe (CEA France)
- •J.E. Bailey et al., JQSRT 81, 31 (2003).

CH₂ foam opacity can be inferred by measuring heating of Mg foils placed behind different foam thicknesses.

Mg tracer heating behind different foam thicknesses discriminates between different CH₂

This method is relatively indirect, but it can address a difficult to access regime

goals for future work

- Model comparisons, feature identification
- Measure transmission with multiple Fe thickness on a single shot
- Extend to shorter and longer wavelengths
- Optimize tamping and sample design with benchmarked rad-hydro simulations
- Extend to higher densities and temperatures (ZR)

Z opacity experiments strengthen existing database and extend measurements beyond T ~ 150 eV

